昆蟲和甲殼動物外骨骼是由幾丁質組成,同時具有輕巧與堅固的特性,再加上彈性蛋白(resilin)的協助,這種複合材料就可以成為絕佳的生物性彈簧,具有相當高的彈性與剛性係數,讓昆蟲和甲殼動物可以把肌肉收縮力調變轉換成出色的彈力輸出,並且超過脊椎動物的肌肉運動極限。小鵪鶉的飛行肌是目前知道最有力的肌肉種類之一,在起飛時功率輸出最大可達400 W kg−1(這是一個相當有趣的發現,不太會飛的鳥卻有爆發力的肌肉),然而一種葉蚤(會彈跳的金花蟲)透過彈性外骨骼輸出功率至少可以達到714 W kg−1,而本研究的水蠆估算可達2114 W kg−1,儘管如此還是比海洋裡的螳螂蝦(4.7 × 105 W kg−1)少了一個級數。
S. Büsse et. al. A controllable dual-catapult system inspired by the biomechanics of the dragonfly larvae’s predatory strike (Sci. Robot 2021) Supplementary Materials https://robotics.sciencemag.org/content/suppl/2021/01/14/6.50.eabc8170.DC1 Movie S3 (.mp4 format). Anax sp. (Odonata: Anisoptera), high-speed videography of recoil prevention, 5400 fps.
影片二、水蠆口器與捕食動作動畫,修改自微米電腦斷層掃描的數據。
S. Büsse et. al. A controllable dual-catapult system inspired by the biomechanics of the dragonfly larvae’s predatory strike (Sci. Robot 2021) Supplementary Materials https://robotics.sciencemag.org/content/suppl/2021/01/14/6.50.eabc8170.DC1 Movie S2 (.mp4 format). Fictive 3D animation of the predatory strike, based on CT data.
影片三、仿生機器人模擬水蠆的獵食動作。(Sci. Robot 2021)
S. Büsse et. al. A controllable dual-catapult system inspired by the biomechanics of the dragonfly larvae’s predatory strike (Sci. Robot 2021) Supplementary Materials https://robotics.sciencemag.org/content/suppl/2021/01/14/6.50.eabc8170.DC1 Movie S5 (.mp4 format). Bioinspired robotic model, videography of the proof of the concept, and loading experiments.